Quick Start Fuel Processor

S. Ahmed, C. Pereira, R. Ahluwalia, T. Kaun, H.K. Liao, S. Lottes, V. Novick, M. Krumpelt

Presented at the

2002 National Laboratory R&D Meeting DOE Fuel Cells for Transportation Program Golden, CO, May 9-10, 2002

Project Timeline

Sep. 2001: Initiate R&D for fast start FP

Jun. 2001: Transfer fuel processor integration technology

Oct. 2000: Transfer fuel processor technology to private developer

May 2000: Initiated collaboration with LANL to integrate PrOx

Dec. 1999: Compared WGS catalysts in integrated unit (ANL, CuZnO)

Aug. 1999: Demonstrated 100 ppm CO from iso-octane, in process train

Apr. 1999: Operated integrated FP with gasoline

Nov. 1998: ATR, sulfur trap, and shift reactor integrated design

Feb. 1996: Transferred methanol reforming to GM R&D

Aug. 1995: Demonstrated methanol reforming in 2" reactor - 50% H₂ in product

Argonne Electrochemical Technology Program

Reviewers' Comments

Consider microchannel heat exchangers

* Improve collaboration or concentrate on basic science, and not development

*Project ignores interaction between FP and the fuel cell. This can significantly alter the design of the fuel processor

Objectives

- Develop strategies to enable fast start fuel processors
 - * Identify fast start constraints
 - * Define and demonstrate feasible strategies
- Demonstrate diesel reforming for APUs

Addresses Technical Barriers

G: Startup, transient operation

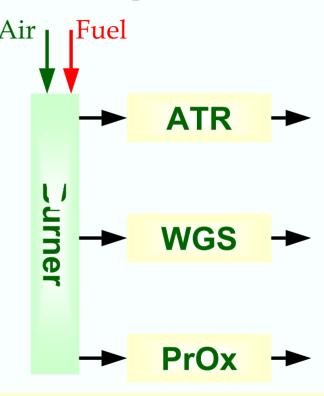
F: System integration, efficiency

H: Thermal Management

Approach: Fast Start FP

- ***** Identify issues that limit fast start
 - *Fundamental technology barrier
 - ◆ Mass of catalyst and materials
 - ◆ Efficiency penalties

Study rapid heat-up characteristics

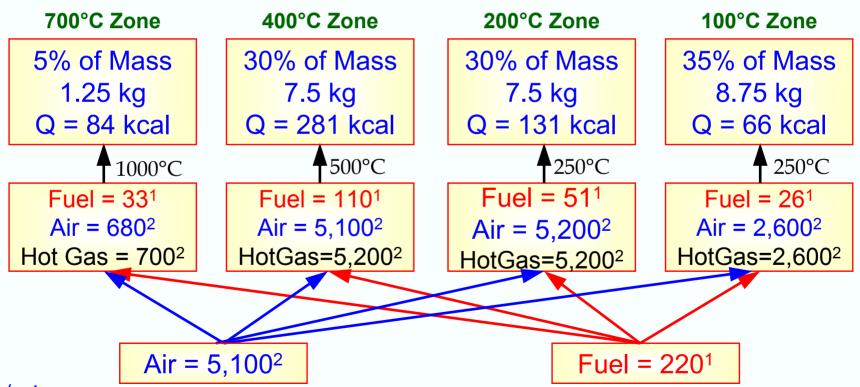

Fast start strategy will need to balance system goals, complexity, and cost

- ***** Start-up Options
 - *Heating with hot combustion gas
 - *Electrical heating of critical zones
 - *H₂ storage
 - ***CO** getter
- * Advances in catalysts and materials to reduce mass are key development needs

Parallel heating allows fast start at intermediate capacities

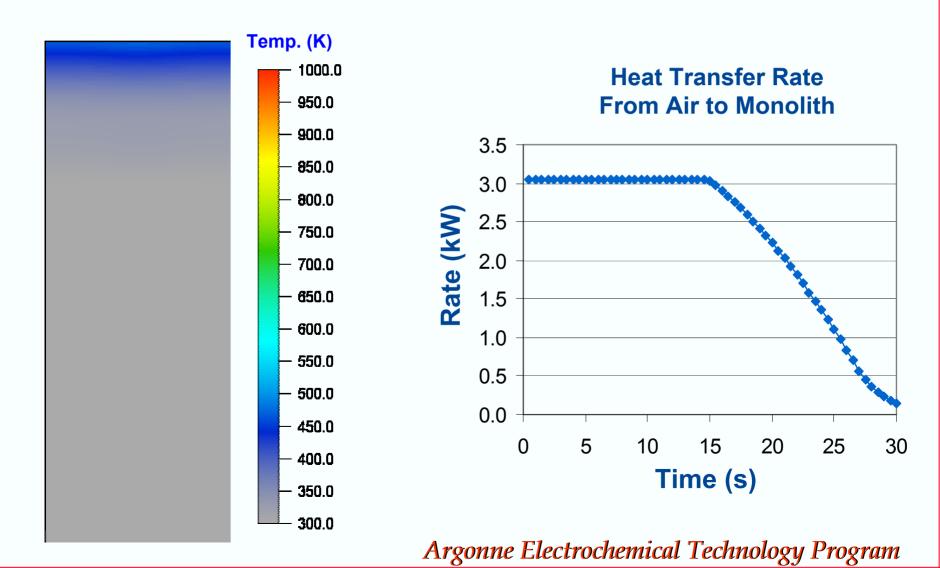
Parallel Heating

- * Individual temperature control for each component
- * Fuel processor can be warmed up to partial capacity
- * Multiple hot gas streams increase complexity
- * Higher sensible heat lost with off-gas

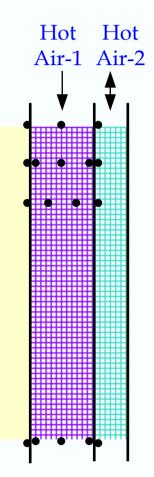


A combination of series and parallel heating may be preferable

Argonne Electrochemical Technology Program


A large volume of hot gas is necessary to achieve rapid start

(Fuel Processor + BOP) Mass = 50 kg Heated Zones = 25 kg Start-up Time = 30 sec


¹mL/min ²SLPM

CFD Model has been developed to predict temperature and velocity patterns during startup

The heat up process is being experimentally verified

- * Simulated "Reactor Zones" have been fabricated, and consist of
 - * Catalyst monoliths
 - * 1 or more boundaries (may be insulation or another reaction zone)
- * Hot gas passed over the catalyst zone* Temperature rise recorded
- * CFD model of reactor zone predicts transient behavior
- * Validated model will be used for fast start reactor design

Approach: Diesel APU

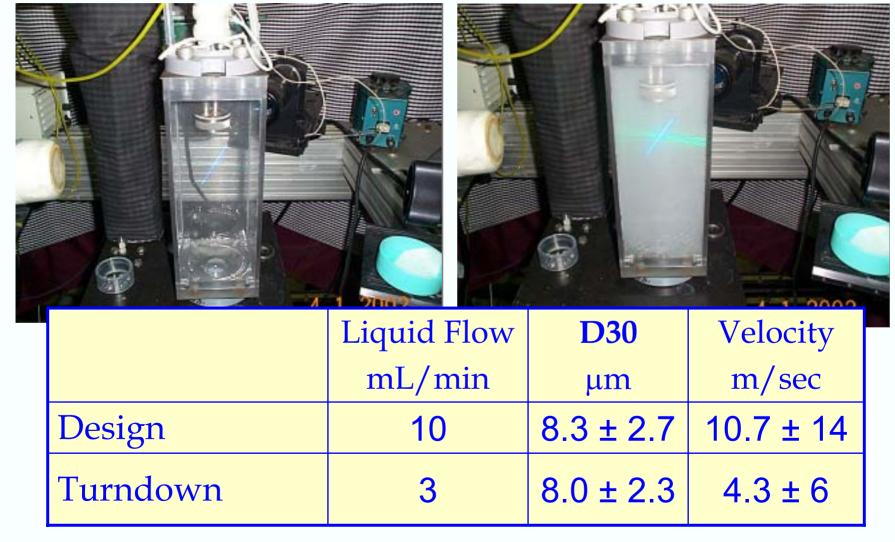
- Diesel is difficult to vaporizeDirect injection of diesel is preferable
- * Adapt commercial nozzles for reforming applications

* Evaluate reforming with direct injection of diesel in 1-3 kWe reformer

Poor fuel dispersion creates hot spots

- * Fuel-rich zones coke
- * Fuel-lean zones get hot
- * Melting point of cordierite is 1450°C

Argonne Electrochemical Technology Program


The nozzle was designed for the diesel reformer

* The nozzle assembly mounts to the catalytic autothermal reformer

* The liquid is atomized into fine droplets

The spray was characterized using PDPA

Reformer performance will be evaluated with direct injection of feeds

- * 25-mm ID, 15-cm long
- * 5 monoliths
 - * 600 cpsi
- * 10 thermowells
 - * Up to 30 thermocouples
 - * Radial, axial T profiles
- * Will initially be tested at 1-3 kWe

Milestones

- ✓ Preliminary design of fast start FP (Dec.'01)
- ⇒ Demonstrate ATR operation using monolith catalyst (Feb.'02)
- Demonstrate diesel reformer operation at 3 kWe (Jun.'02)
- ♦ Model alternative FP design capable of 2-min startup (Jun.'02)
- Demonstrate 5-min startup of a 10 kW fast-start FP (Aug.'02)

Highlights

- * Evaluated multiple start-up options
 - * Reduction in FP thermal mass is critical
- Developed a CFD model to simulate zone heating
- Designed, fabricated, and installed a generic reactor to validate the model

- New nozzle designed for diesel reformer produces a very fine mist over range of flows
- * Diesel reformer has been fabricated and installed

Accomplishments and Plans

- Demonstrated compact and efficient fuel processor
- ***** Transferring technology to industry
- Ongoing fast-start FP R&D
 - *Theoretical: Analysis of FP start-up needs leading to feasible strategies
 - *Experimental
 - ◆ Validate transient model with heat-up experiments
 - ◆ Design and demonstrate fast start FP